
44/D-.182 963 ! ITYNL C UOUME 7 1/1

UNCLASSIFIED X( MEON A.9 21NU5 60 F/G 12/3 N.



1.0
ilium:im3

Imp
25 Q6



AD-A182 063 A n1 COPY
AFWAL-TR-86-4006
Volume VII
Part 1

INTEGRATED INFORMATION
SUPPORT SYSTEM (lISS)
Volume VII - Communications Subsystem
Part I - COMM Development Specification

DTIC
General Electric Company ELECTE
Production Resources Consulting LT,9
One River Road UL 0 6I
Schenectady, New York 12345

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

PREPARED FOR:

MATERIALS LADORATORY
AIR FORCE WRIGMT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRI=GT-PATTERSON ATB. O 45433-6533

b 7 V 0 38:

l ., LEA



NOTICE

When Government drawings. specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated. furnished. or in any way supplied the said drawings.
specifications, or other data, is no( to be regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission to manufacture, use. or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASDIPA) and is releasable to the
National Technical Information Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repo/has been reviewed and is approved for publication.

A A/D'L.JUD.SON PROJECT MANAGER DATE

!_ WRIGHT PATTERSON AFB OH 45433

kvL| 

AT

FOR THE COMMANDER.

/-EALD C. SHUMAKER. BRANCH CHIEF DATE
AF1AIAUMLTC
WRIGHT PATTERSON AFO OH 45433

I.

WIf your adoress has changed. if you wish to be removed from our mailing list, or if the

addressee is no longer erpbfoyed by your organization please notfy AFWALALTC, W-PAFB, OH
45433 to help us maintain a cunent mailing list."

Copes of this report should not be returned unless return Is required by security connors"ftv
contractual obligatons, or notice on a specific document.



Unclassiflied I ove.ber 1985
SBCuO"v CLASS @.CAY,@% Of Twig 0A03

REPORT DOCUMENTATION PAGE
16 A9&0A? Sjew

0

rV
T 

9JlAUIACIO to 01697rte"iva " AfaLls"

Unclassif Led

1a SUCUSITV gb&'SPCAdOt. AuTNOmOTy 3 ofSaIub.*yAIAASI~eY R0 ESPORT

2 OEl£.AUSSa TaOe@~'S .Ow GAOs#.OSCm ~sI l Approved for public release;
distribution Is unlimited.

d. p Oap*omif, OmGAftIaTAOis AgOook? uwMIaI laD 1. MOiYvokiftG 014GAtaNi R5E1POR? 01UMSAlFt-0j

AFVAL-TR-86-40006 Vol VII, Part 1

S, %A& Of P64aaoauG 05INGIWZATOf, 6. OPPC9 8V6sO&. ?a fati DO "OnITOeOhG OftGA0&LAIO@d

i General glectric Company AFWA,-- ,
Production Resources Consulting A___ /_ _ _ __,_

4L ADD4ass (Cats. loss me ZIP Cdej ft. ADDRESS Igdft.Sb 845 ZWIP COW)

3 River RoadSchenectady. NY 1234 VPAFB. OR 45433-6533

b ame O 0@ 0u "DmtbePOftSoG $No OPPOCR SyMSoA. . PSOCUP19IdNT MUISTMSN? abT' ilPCATrlO ftwullp
I~ter 8ila oratory J1'AI q-q I)1-OGSS

Air Fore* systems Comma". USAF £1AL/NC.C I5360-S-C-s5

ft ADDRESS 4191.SM MO SIP Come) 10 $OUNCE OP PUNDIe.0 Not
PROGRlAMl pROAi4¢' TASK WORaC Wh I'T

Urigt-Pattersoa MS1. Ohio 4453 aS LIsft? o. SOD. 01. No.

6017 75OI 100 82 01

(So Reverse)

I2.ftS~ot.AI*UioeftS| Veldon. Kazen and Phillips. Donna

136 'iTvof RIPOmIT ig. vtIE WVaI@t t. *aTs aP REPORT fre. A. 00 1s PAGE CO64 T
&Is yTe.bsil npos za ept INo - I aay an$ T 1065 November 64

is SUOP9.IITMav NOTA?,OOf The computer softvare contained herein are theoretical and/or

references that in so way reflect Air Force-ovned or -developed
SCAN Project Priority 6201 computer soft ae.

I, 56I* CODES 119 SUSACT "MISH fEoab.m m wwI W e eg afah ft Shr aWnm',

no6**w as

is ASSTRAC? co aneme m~ if Vwnmaf a dinaf "~ aim mInS

/-q'This document defines the Development Specification for the
Communications Subsystem (COHN) configuration item of the
Integrated Information Support System (IISS) Test Bed. The
Test Bed is an integrated hardware/softvare environment in
which various Integrated Computer Aided Manufacturing (ICAN)
Program applications will function cooperatively. f

i ,aoeosa.Siu.oYU SA AI s s WT. 0 wig wae Unolasifled

S2 U "s 50604180~ ISAa VIUAL Us 'YSLtoil wusl DVM5 DOES sYSOO
51s-Aims

O0 PORM 143. 23 APR I.Yaf of I akm a 08s0"S. nclasti ted

/ -



11. Title

Integrated Information Support System (IISS)
Vol VII -Communications Subsystem
Part 1 - COH Development Specification

Accesion For

NTIS CRA&M
DTIC TAB tJ
Unannounced 0

B a . ............ .....................

.. . -....-. .--..
D t ibjtion

Av~iubifity Codes

L .'..la

OsI



DS 620143000
1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This contract Is sponsored by the Materials Laboratory. Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAN Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company, Schenectady, New York, under the direction of
Mr. Allan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at Improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACON) state-of-the-art literature

search

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models

iii

- ~ ~-e~~*w, *t . -

I



DS 620143000
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and Information models of
small and medium-size business

North American Rockwell Reviewer

Northrop Corporation Responsible for factory view
function and information
models

Pritsker and Associates Responsible for IDEF2 support

SofTech Responsible for IDEFO support

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BEAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CDM) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDN
(DACOM) Subystem design integration and

test plan, as well as part of
the design of the CDM (shared
with CDC). DACOM also
developed the Integration
Methodology and did the schem
mappings for the Application
Subsystems.

IV



DS 620143000
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the IRP II package (PIES) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NT!) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Subcontractors and other prime contractors under other
projects who have contributed to Test Bed Technology, their
contributing activities and responsible projects are as follows:

Subcontractors Role

General Dynamics/ Responsible for
Ft. Worth factory view

v

. . .. .-''- nm, n d ~ ~ l • I nnnmm m n m mmt



DS 620143000
1 November 1985

Contractors ICAM Project Contributing Activities

Boeing Military 1701, 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC)

Control Data 1502, 1701 IISS enhancements to
Corporation (CDC) Common Data Model

Processor (CDmP)

D. Appleton Company 1502 IISS enhancements to
(DACOM) Integration Methodology

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements
Company (HAC)

Structural Dynamics 1502, 1701, IISS enhancements to
Research Corporation 1703 User Interface/Virtual
(SDRC) Terminal Interface

(UI/VTI)

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

I



DS 62014:3000

1 November 1985

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE....................................... 1-1
1.1 Identification........................... 1-i
1.2 Functional Summary....................... 1-1

SECTION 2.0 DOCUMENTS.................................. 2-1
2.1 Applicable Documents...................... 2-1
2.1.1 Specifications......................... 2-1
2.1.2 Standards.............................. 2-1
2.1.3 Other.................................. 2-2

SECTION 3.0 REQUIREMENTS................................. 3-1
3.1 Communications Subsystem.................... 3-1
3.1.1 Communication Subsystem

Constraints.............................. 3-1
3.1.2 Interface Requirements.................... 3-6
3.1.2.1 Interface Block Diagram................. 3-7
3.1.2.2 Detailed Interface

Definition of COMM...................... 3-7
3.1.2.3 Detailed Interface Definition of

Primitives............................... 3-7
3.2 Detailed Functional Requirements............ 3-8
3.2.1 Communication Protocol -

Characteristics and Description............3-8
3.2.1.1 Characteristics of the

Communication Protocol...................3-8
3.2.1.2 Sequence Number Handling................ 3-11
3.2.1.2.1 Send Sequence Number Checking.........3-11
3.2.1.2.2 Receive Sequence Number

Checking............................... 3-11
3.2.1.3 Use of Protocol for Binary Date

Transmission............................. 3-11
3.2.1.4 Interface Between IBM and non-IBM

Computers................................ 3-12
3.2.1.4.1 Non-IBM Computers...................... 3-12
3.2.1.4.2 IBM Computers.......................... 3-13
3.2.2 Message Format............................. 3-13
3.2.3 Timing.................................... 3-17
3.2.3.1 Line Idle................................ 3-17
3.2.3.2 Master................................... -17
3.2.3.3 Slave................................... 3-17

vii



DS 620143000
1 November 1985

TABLE OF CONTENTS (Continued)

pale

3.2.3.4 NTM Input Mailbox Full ................ 3-17
3.2.4 Block Check Computation ................. 3-17
3.2.5 Control Characters in Data .............. 3-18
3.2.6 Communication Subsystem Primitives ...... 3-18
3.2.6.1 Intialize Communication Port

Interface .............................. 3-18
3.2.6.2 Send a Message to a Terminal

Port .................................... 3-19
3.2.6.3 Receive a Message from a

Terminal Port .......................... 3-20
3.2.6.4 Get a Message from a Terminal

Port .................................... 3-21
3.2.6.5 Cancel a Receive Request from a

Terminal Port .......................... 3-23
3.2.6.6 Terminate Communication

Port Interface ........................ 3-24
3.2.7 Interprocess Communication

Primitives ............................... 3-24
3.2.7.1 Create a Mailbox ....................... 3-24
3.2.7.2 Send a Message to Another

Program ................................ 3-27
3.2.7.3 Receive a Message from Another

Program ................................ 3-28
3.2.7.4 Get a Message from Another Program .... 3-29
3.2.7.5 Delete a Mailbox ....................... 3-29
3.2.7.6 Release an Event Block ................ 3-30
3.2.7.7 Start a Timer .......................... 3-31
3.2.7.8 Stop a Timer ........................... 3-32
3.2.7.9 Wait for an Event to Occur ............ 3-33
3.2.7.10 Terminate a Program ................... 3-35
3.2.7.11 Save an Event Indicator ............... 3-36
3.2.7.12 Request an Error Be Logged ............ 3-36
3.2.7.13 Log an Error . .......................... 3-37
3.3 Special Requirements ....................... 3-39
3.3.1 Programming Methods ...................... 3-39
3.3.2 Expandability ............................ 3-39
3.4 Human Performance .......................... 3-40
3.5 Data Description of Arguments Used

with the Primitives ........................ 3-40
3.5.1 Data Descriptions of Arguments for

Communication Subsystem Primitives ...... 3-40

viii



DS 620143000
1 November 1985

TABLE OF CONTENTS (Continued)

Page

3.5.2 Data Description of Arguments for IPC
Primitives .............................. 3-41

3.5.3 Data Description for the Event Block .... 3-45
3.6 Adaptation Requirements .................... 3-46

SECTION 4.0 QUALITY ASSURANCE PROVISIONS ................ 4-1
4.1 Introduction and Definition ............... 4-1

SECTION 5.0 PREPARATION FOR DELIVERY .................... 5-1

LIST OF ILLUSTRATIONS

Figure Title

3-1 IISS Test Bed Communications Subsystem
(Structural Schematics) ..................... 3-2

3-2 IISS Hardware Configuration ................. 3-3
3-3 Interprocess Communication Architecture ... 3-5
3-4 COMM Configuration Tree ..................... 3-8
3-5 Simple Scenario for Sending a Message

Between NTM's ................................ 3-10
3-6 Communication Block Diagram ................. 3-16

ix



DS 620143000
1 November 1985

SECTION 1

SCOPE

1.1 Identification

This specification establishes the performance,
development, test, and qualification requirements of the
computer program identified as the Communications Subsystem,
hereinafter referred to as COMM. COMM is one configuration item
of the Integrated Information Support System (IISS).

1.2 Functional Summary

The COMM Computer Program Configuration Item (CPCI)
provides a mechanism for transferring messages (data and
control) between two tasks. These tasks can be executing on the
same computer or on different computers. For the latter, the
two tasks are Network Transaction Managers (NTM's).

The major functions of the COMM are:

1. Interhost Communications: Interhost Communications is
responsible for moving variable length messages
without error between computers. This function
receives messages from an STM, passes the messages to
a local area network (LAN), receives messages from the
LAN, and passes the messages to an NTM.

2. Interprocess Communications: Interprocess
Communications allows the NTM to receive messages
from and send messages to programs on the same
computer. The programs may be another portion on the
NTM, COMM, UI/VTI, the precompiler, NDDL, or user
application programs. This function also allows
programs to use timers and to process fatal errors.

1-1



DS 620143000
1 November 1985

SECTION 2

DOCUMENTS

2.1 Applicable Documents

The following documents were used in the definition of the
COMN specification.

2.1.1 Specifications

[1] Control Data Corporation and D. Appleton Co., Inc.;
IISS Test Bed CDM Needs Analysis, 7 June 1982; IISS
Test Bed CD) Environment, 7 June 1982; IISS Test Bed
CDM System Requirements, 7 June 1982.

(2] General Electric Co., Test Bed System Requirement
Document (Draft), Revised 23 August 1982.

[3] ICAN Computer-Based Information System (CBIS) System
Requirements Document (Draft), 10 September 1981, CI
*SRD3101400000.

[4] General Electric Co., Test Bed System Specification
(Draft), 23 August 1982.

[5] General Electric Co., Test Bed System Design

Specification, 7 February 1983.

2.1.2 Standards

[6] American National Standards Committee X3, American
National Dictionary for Information Processing,
X3/TR-1-77, September 1977.

[7] ICAN Documentation Standards, 28 December 1981,

IDS150120000A.

(8] SofTech, Inc., ICAM Test Bed Interim Standards and
Procedures, 31 May 1982; ISP620150000.

[9] General Electric Co., IISS Software Development
Guidelines/Conventions-Draft), 23 August 1982.

2-1

-Ab



DS 620143000
1 November 1985

2.1.3 Other

[10] ICAM Program Office, The Integrated Sheet Metal
Center, 30 September 1981.

[11] ICAM Program Office, The Role of the ICAM Test Bed
and Integrated Information Support System aft, 18
May 1982.

[12] SofTech, Inc., IISS Response to CBIS Requirements and
'Threads': SofTech Reactions, 18 March 1982.

[13] Digital, VAX-11 Architecture Handbook, Digital
Equipment Corp., Maynard, MA, 1979.

[14] IBM, A Guide to the IBM 3031 Processor Complex and
Attached Processor Complex of System/370, GC20-18
54-3; System/370 Principles of Operation, GA22-70000.

[15] Honeywell, Level 6 Minicomputer Systems Handbook.

[16] Digital, VAX/VMS System Services Reference Manual,
AA-DO18B-TE; VAX-li Information Directory and Index,
AA-DO16D-TE.

[17] Users' Manual, IDBMS (2.0) Users' Manual, June 1980.

[18] Systems Users' Manual, IDBMS (2.0) System Users'
Manual, June 1980; IBM, OS/VS2 MVS Supervisor
Services and Macro Instructions; GC28-0683-2.

[19] Honeywell, Level 6 GCOS MOD600 System Concepts,
CB50-02.

2-2



DS 620143000
1 November 1985

SECTION 3

REQUIREMENTS

This section includes functional and performance
requirements for the COMM. In addition, it defines the CON
interfaces to other IISS CPCI's.

3.1 Communications Subsystem

The Communications Subsystem is primarily used to transfer
messages (as opposed to files) between Network Transaction
Managers on two different host computers. (The transfer of
messages between tasks on the same computer is accomplished
through Interprocess Communication Primitives.) Two copies of
the COMM (the name of a single occurrence of the Communication
Subsystem program) reside on each host, and each copy
communicates between the NTM and a copy of COMM residing on one
of the other hosts (see Figure 3-1). COMM communicates with the
NTM via the IISS Interprocess Communication Primitives.

The requirement to implement IISS as a system residing on
three computers has caused many system dependent issues to
surface. The system design goal is to isolate system dependent
coding by creating primitives which hide the system dependent
programming from the IISS subsystems. The primitives used by
COMM are:

1. Interprocess Communication (IPC)
2. Interhost Communication (IHC)

3.1.1 Communication Subsystem Constraints

The IISS hardware consists of a Local Area Network (LAN)
and its interface into each computer (see Figure 3-2). The
terminal interface standard is the interface into the LAN. The
interface to the IBM is handled through an IBM 3271 station
emulator (cluster controller) that manages the asynchronous to
synchronous, the EBCDIC to ASCII character set, and the RS232C
to 3270 protocol conversions.

The IISS protocol has permanent virtual circuits
established between each pair of computers by the LAN when it is
started (see Figure 3-1). By placing this requirement on the
LAN, the overhead of having the communication software establish

3-1

1i



DS 620143000
1 November 1985

II I/k

I II

I '
' . i 

-

.oKKI I,

I I I _

I I I 
*'

a 0

3-2



DS 620143000
1 November 1985

ix
Is zo

300

10 ~w
0

-4

CC

L- - - - - - -

3-3'

Ap.. -A&



DS 620143000
1 November 1985

the circuit for each message of each session is removed. The
COMM will be attached to each line when the computer is started
or when IISS is initiated.

The communication subsystem is constrained in the
following ways:

1. It must be implemented on each of the following
systems with no modifications or additions to the
operating systems or communication drivers.

VAX - VMS
Honeywell Level 6 - MOD400
IBM 3084 - MVS

2. A Local Area Network (LAN) will be used to interface
these three systems. Terminal interfaces must be used
since these three systems support no other way to
uniformly interface to a LAN. The terminal interface
to the IBM computer can be supported by using an IBM
3271 station emulator.

3. An MRP program has been chosen to run on IBM using the
CICS sub-operating system. CICS supports only COBOL,
PL-1. and assembly language. Of these three choices,
COBOL has been selected as the implementation
language. (This restriction was lifted in 1984.)

4. Programming in assembly language is to be avoided to
the greatest extent possible.

These constraints place the following constraints on a data
transmission protocol:

1. Full-duplex transmission is not supported.
2. Binary data transmission is supported with data

translation.
3. Variable length data messages must be terminated by a

carriage return.
4. Eight bit characters are not supported (seven bit

characters with the eighth bit used for parity is
supported).

5. Message headers, binary data translation, and the
longitudinal redundancy checking technique have been
chosen to allow for a COBOL implementation.

The communication protocol described in the detailed

3-4

km.. .



DS 620143000
1 Novemnber 1985

Figure 3-3. Interprocess Communication Architecture

3-5



DS 620143000
1 November 1985

functional requirements section satisfies these constraints and
provides for point-to-point communication between any two of the
three NTM's using three permanent virtual circuits on the Local
Area Network.

The Interprocess Communication Primitives (IPC) are the
mechanisms that the NTH will use to transfer data between itself
and the application programs (AP) in the computer (see Figure
3-3). This approach removes the necessity of re-writing the NTH
for each computer in the IISS configuration since the
system-dependent software will be in the primitives.

Because of the highly system-dependent nature of the
communication primitives, they must be implemented three times -
once on each computer.

3.1.2 Interface Requirements

The Communication Subsystem consists of two copies of COHN,
one resident in each host, enabling two NTK's to communicate
with each other. In this sense the communication subsystem
interfaces only with the NTH. This interface is accomplished
with IPC's. To inittate communication with the NTH, COHM must
use an 1TM runtime service called IICO . This service must
supply to COMN its input communication mailbox name. COH must
call TRMNAT upon termination in order to stop all further
communication with the NTH.

Two types of messages are received by COHN from the NTH:

I. Data messages (both binary and native character set)
2. Control messages

A field in the NTH message header indicates whether or not
a message is a data message or a control message. If it is a
data message, another field in the header determines whether the
data message is "native" or "binary." If it is a control
message, the type is included in the message header.

Two types of messages are sent to the NTh by CON:

1. Data messages (both binary and native character set)
2. Status messages (includes statistics)

The communications subsystem interfaces with the LAN via
the standard RS232C terminal interface.

3-6 1

0116



DS 620143000

1 November 1985

3.1.2.1 Interface Block Diagram

The structural schematic for the communication subsystem is
depicted in Figure 3-1. This shows the COMM interfaces to the
NTH and the LAN.

3.1.2.2 Detailed Interface Definition of COMM

The Communication Subsystem receives messages from and
sends messages to the NTH via the IPC's. Each message contains
message data and a message header as described by the NTH. The
COMM uses the following fields from the header:

" Destination AP Name
* Message Type
" Binary/Native Flag
* Priority Flag

Upon receiving messages from the NTH, the COMM checks for a
control message by checking the destination AP name for COMM.
If it is COMM, processing is determined by a message type of
startup link (SL) or shutdown link (SD) or terminates (TR). If
the destination is not CONK, CONK sends the message according to
the binary/native flag.

Messages sent to the NTH from CON are control messages or
data messages. Control messages have the destination set equal
to NTH, the priority flag equal to high, and are put in the high
priority input queue for NT. The message type may be link
active (LA), link failure (LF) or recoverable error (RE). The
data portion of the recoverable error message contains the error
number. Data messages have the destination set equal to
whatever it was on input to COMM. These messages are put in the
correct NTM input queue according to the priority flag.

3.1.2.3 Detailed Interface Definition of Primitives

The VAX implementation of the primitives uses a combination
of COBOL and FORTRAN. All system services are called using
FORTRAN with most of the other codes such as error checking
being done in COBOL.

The Level 6 implementation of the primitives uses a
combination of COBOL and Assembly Language. All system services
are called using Assembly Language because the Level 6 only
supports an Assembly Laanguage interface to system services.

3-7

I



DS 620143000
1 November 1985

In the IBM system, IISS is implemented in the Assembler and

interfaces to the MVS operating system.

3.2 Detailed Functional Requirements

The node tree shown in Figure 3-4 illustrates the COMM
functions currently defined.

COMMUNICATION
SUBSYSTEM

INTERHOST INTERPROCESS

CO4UNICATION COMMUNICATION

Figure 3-4. COM Configuration Tree

Descriptions of these functions may be found in the
following paragraphs.

3.2.1 Communication Protocol - Characteristics and Description

A simple scenario for sending a message between NTH's is
depicted in Figure 3-5.

3.2.1.1 Characteristics of the Communication Protocol

1. Uses asynchronous communication lines.

2. Contention system with one end point designated as
primary and the other as secondary.

3. Point-to-point.

4. Half-duplex (uses full-duplex communication lines).

5. Interleaved data transmission.

3-B

I



DS 620143000
1 November 1985

6. Uses the ASCII character set (excluding control

characters 000-037 octal).

7. Error detection and correction by retransmission.

8. Byte stuffing is used to send the control characters.
An exclamation mark (1) precedes a translated control
character. The control character can then be
reconstructed by the receiving COMM program.

9. Eighth bit used for even parity.

10. Accepts variable length NTM messages.

11. All messages terminated by carriage return.

12. Large messages are segmented into packets and
reassembled by the receiving COMM.

13. Transmits variable length communication blocks.

14. Symmetric protocol with contention. The retry timing
in case of simultaneous line bids is 1 second for the
primary endpoint and 5 seconds for the secondary
endpoint.

15. Retries a configurable number of times before
reporting a link failure to the NTH. Currently, the
number is three.

16. Master/Slave relationship determined by the endpoint
that successfully bids for the line. Successful
bidder becomes the master.

17. Data say be transmitted by either the master or the
slave endpoint.

18. All timing is performed by the master. Time out
interval is 3 seconds.

19. End of transmission bit may only be sent by the master
*nd only when neither master nor slave has a

3-9

___ Sc. . .

I nnmnnn d m I• ••



DS 620143000
1 November 1985

I' I I' '

NTM I I NTMII I
I I

I II I
MAILBOX MAILBOX I I

I II I
I I1 I

I I I

(1) I (5)

I (2)I I"I
I IOH CH
-- I I" (2) I I,-I

I I (7I -,

HOST 1 HUST 2

(1) Message received
(2) Line bid
(3) Grant line
(4) Message sent
(5) Message delivered
(6) ACK
(7) ZOT

Figure 3-5. Simple Scenario for Sending a Message Between NTM's

3-10



DS 620143000
1 November 1985

requirement to send data.

3.2.1.2 Sequence Number Handling

The send sequence number and the receive sequence number
are used to prevent either duplication or loss of communiction
blocks. The first data block following a successful line bid is
sent with a send sequence number of 1. Subsequent blocks are
sent with the send sequence number cycling from 2 to 3 and back
to 1. The received sequence number is used in reply to a
sending COMM. A receiving COMM returns the send sequence number
as the received sequence number after forwarding the data to the
local NTH.

3.2.1.2.1 Send Sequence Number Checking

If the send sequence number is as expected, then the data
is stored and that number is returned as the received sequence
number. The expected send sequence number is incremented by
one.

If the send sequence number is one less than expected, then
that number is returned as the received sequence number.
However, the data is not stored since it was stored on receipt
of the prior message (which must have been repeated). The send
sequence number should never be one more than ei.pected.

3.2.1.2.2 Receive Sequence Number Checking

For a given copy of COMM the received sequence number from
the correspondent COMM should be the same as its prior send
sequence number indicating that the correspondent COMM received
the communication block correctly. COMM then increments the
send sequence number for the next block.

If the received sequence number is one less than the prior
send sequence number, then COMM retransmits the data using the
same send sequence number.

The received sequence number should never be one more than
the prior send sequence number. If it is, COMM sends a negative
acknowledgment indicating the error.

3.2.1.3 Protocol for Binary Data Transmission

When an NTN is required to send binary data using this
transmission protocol, the binary information will be expanded

3-11



DS 620143000
1 November 1985

into an acceptable set of characters (0-9 and A-F), transmitted
as characters, and transformed to binary upon receipt from the
LAN. The following data translation algorithm will be applied
to the data by the communication subsystem.

Each byte of data is transmitted as two bytes of ASCII
data. The first byte represents the higher order 4 bits of data;
the second, the last 4 bits.

This translation is reversed by the receiving station in
order to rebuild the original NTN message.

3.2.1.4 Interface Between IBM and non-IBM Computers

When using standard terminal I/0 drivers to transmit data
between the IBM and non-IBM computers, there are four problems
that must be considered:

1. Removing control characters from the message before
sending it and inserting them back into the message
after it has been received.

2. Using one character set to compute the longitudinal
redundancy check on all computers.

3. Conversion or translation of certain characters
because of unique problems. For example, spaces are
converted to cursor control by protocol converters so
spaces must be replaced by a special code before
transmission.

4. Checking for characters in EBCDIC that do not have an
equivalent character in ASCII.

These problems are solved in the three subroutines, KMINDA,
EXOUDA, and KLCLRC, in the Communication Subsystem through the
use of two tables. The tables are found in the include files
CTLASC and ASCII on non-IBM computers and CTLEBC and EBCDIC on
the IBM.

3.2.1.4.1 Non-IBM Computers

The CTLASC and ASCII include files are used in computers
whose native character specification is ASCII. The table in the
ASCII include file is used by the EXOUDA and KLCLRC subroutines
to determine if there is an equivalent EBCDIC character, and, if
It is a control character, what the substitution code is.

3-12

Ia



DS 620143000
1 November 1985

The table contains positive, negative, and zero values.
The negative values indicate that the character being prooessed
is a control character or a character that requires special
conversion for transmission. The code to be used in the message
is the negated negative value found in the table. If the value
is positive, the original character is used in the message. If
the value is zero, there is no equivalent character in the
EBCDIC character set.

The table in the CTLASC include file is used by the KNIIDA
subroutine to restore the original message. Through the table,
KNINDA determines the correct control character or special
character to be inserted into the message in place of the code
character found in the message. The code consists of
alphanumeric characters that will not cause terminal I/0 drivers
to react in a special manner. The flag in the message that
indicates a code character follows is the ().

3.2.1.4.2 IBM Computers

The CTLEBC and EBCDIC include files are used in the IBM
computers where the native character specification is EBCDIC.
The table in the EBCDIC include file is used for two functions.
In EXOUDA it is used to determine if there is a comparable ASCII
character, and, if there is an ASCII equivalent, is it a control
character or a special character. In KLCLRC the table in EBCDIC
is used to convert all the characters in the message to ASCII in
order to perform the sum for the longitudinal redundancy check.
(Negative values in the table are never used in KLCLRC because
conversion is done by EXOUDA before KLCLRC is called.)

The contents of the table in the EBCDIC include file on the
IBM have the same definitions for positive, negative, and zero
values as its counterpart file, ASCII, does in the non-IBM
environment.

The table in the CTLEBC include file is used by the XMINDA
subroutine in the Communication Subsystem on the IBM in exactly
the same manner as KMINDA in the Communication Subsystem on the
non-IBM computers.

3.2.2 Message Format

Each message contains seven characters in addition to the
data characters. The first three characters are called the
header, and the last four characters are called the trailer.

3-13

I '.



q

DS 620145000
1 November 1985

This is depicted in Figure 3-6.

Header Character #1 - Send Data Sequence Number Byte

ASCII Character
0 No send data message
1 Send Sequence Number 1
2 Send Sequence Number 2
3 Send Sequence Number 3

Source sequence number cycles from
1 to 2 to 3 and back to 1 when
data is being transmitted.

Header Character #2 - Received Data Sequence Number Byte

ASCII Character
0 No received data message
1 Received Sequence Number 1
2 Received Sequence Number 2
3 Received Sequence Number 3

Header Character #3 - Control Byte

ASCII Character

The following 8 control chars do not accompany a data mag.
0 Positive Acknowledgment
I Line Bid
2 On-Line
3 End of Transmission
4 NAK - Parity Error
5 NAK - No Buffer Space
6 NAK - Bad Receive Sequence Number
7 YAK - Bad Send Sequence Number

The following 4 control chars always accompany a data msg.
A ACK - Sending Native Data
B ACK - Sending Binary Data
C ACK - Sending Continued Native Nag.
D ACK - Sending Continued Binary Nsg.

Trailer Characters
#1. 2, & 3 - Block Check

These three characters contain a message block check. The block
check is computed by adding all bytes in the message (including

3-14



DS 620143000
1 November 1985

the header bytes). This block check could be up to 18 bits in
size for a message block of size 2048 bytes. The 18 bit
additive result is split into three 6 bit quantities. Each 6
bit quantity is represented by an ASCII character, with the
three characters being stored as the last characters in the
message (high order byte occurring first).

The block check characters occur only in messages containing
data.

Trailer Character #4 - Carriage Return

4

3-15

Ii



DS 620143000
1 November 1905

Send I Rcv. I Ctrl. I I I I I C
i Seq. I Seq. I Byte I DATA I Bc I Bce I Boc I R I
I No. I No. I I 1 I 2 I 3 I 1
---------------------------------------------------------------

or

i Send I Rcv. I Ctrl. I C I
i Seq. I Seq. I Byte I R I
I No. I No. I I I

SEND SEQUENCE RECEIVE SEQUENCE NUMBER

0 - No send data 0 - No received data
1 - Send sequence 1 - Receive sequence

number 1 number 1
2 - Send sequence 2 - Receive sequence

number 2 number 2
3 - Send sequence 3 - Receive sequence

number 3 number 3

CONTROL BYTE

THE FOLLOWING CHARACTERS DO NOT ACCOMPANY DATA

0 - Positive acknowledgment
I - Line bid
2 - End of transmission
3 - NAK - Block check error
4 - NAK - NTM input mailbox full
5 - NAK - Bad send sequence number
6 - NAK - Bad receive sequence number

THE FOLLOWING CHARACTERS ALWAYS ACCOMPANY DATA

A - ACK - Sending native data
B - ACK - Sending binary data
C - ACK - Sending continued native data
D - ACK - Sending continued binary data

Figure 3-6. Communication Block Diagram

3-16



DS 620143000
1 November 1985

3.2.3 Timing

3.2.3.1 Line Idle

When the line is idle, the line bid message may be sent by
either endpoint. If a collision of line bids occur or if there
is no response, the primary waits for 1 second before
retransmitting a line bid, and the secondary waits for 5
seconds.

3.2.3.2 Master

The endpoint successfully bidding for the line becomes the
master. The master waits for 5 seconds for a response from a
slave. A time-out causes retransmission of the prior
communication block.

3.2.3.3 Slave

The slave waits for

(Maximum number of retries x 5 sees) + 5 seconds

for a response from the master. If data is not received within
this time, the slave assumes an end of transmission was missed
and returns to an idle state. If a partial message is being
assembled, a link failure is reported and the partial message is
discarded.

3.2.3.4 NTM Input Mailbox Full

When a copy of COM discovers that the NTH input mailbox is
full, it waits for one second and tries again to place the
message in the mailbox. If the condition still exists, a NAK
message is returned to the correspondent COMM. The
correspondent COMM sends an error status message to its local
NTM and retransmits the communication block.

3.2.4 Block Check Computation

The block check is computed by adding all bytes in the
communication block excluding the block check itself and the
carriage return. This could account for an 18 bit block check
for a message block of size 2048 bytes. The 18 bit additive
result is split into three 6 bit quantities. Each 6 bit
quantity is represented by a valid ASCII character with the

3-17

~ *.-.~&l ..-. '.--\



DS 620143000
1 November 1985

three characters being stored as the last three characters in

the message (high order byte occurring first).

3.2.5 Control Characters in Data

The 32 ASCII control characters (octal 0-37) affect the
behavior of the I/0 handlers and therefore cannot be allowed in
the data stream. Byte stuffing will be used to convert each
control character to a valid ASCII character proceeded by a
usable special character such as data link escape.

3.2.6 Communication Subsystem Primitives

The design of the COMM is made up of a large generic
portion that will be the same for all computers, and a small
host-specific part (primitives) that is specially developed for
each computer. The host-specific part is a group of routines
called the Interhost Communication Primitives (IHC's). The
following is a description of these routines.

3.2.6.1 Initialize Communication Port Interface

Calling Sequence:

CALL INILAN USING PORT-NAME,
RCV-BLOCK,
XMIT-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

INILAN moves the PORT-NAME or some system dependent
equivalent to the appropriate storage in the XMIT and RCV
blocks. If initialization for some system services associated
with the port is required, it is performed in this primitive.
INILAN also initializes the XMIT and RCV blocks with character
zeros.

Inputs:

PORT-NAME
RCV-BLOCK
XMIT-BLOCK
EVENT-BLOCK-nn

3-18

• - ~I

4



DS 620143000
1 November 1985

Outputs:

STATUS

Possible Status Conditions:

Successful
System dependent errors

3.2.6.2 Send a Message to a Terminal Port

Calling Sequence:

CALL "XMTLAN" USING XMIT-BLOCK,
EVENT-BLOCK-nn,
FLAGS,
STATUS.

Description:

XMTLAN outputs a message to a given terminal port.

Inputs:

XMIT-BLOCK
EVENT-BLOCK-nn
FLAGS

Outputs:

STATUS

Possible Status Conditions:

Successful
Number of bytes zero
Number of bytes greater than maximum
Receive LAN outstanding
System dependent errors

Notes:

1. The XMIT-BLOCK contains the port name, the number of
bytes to be transmitted, and the buffer with the
message. (See the next section for a detailed
description of the XMIT-BLOCK.)

3-19

: , , mmmimmmmmm mWm ~ ~ m n m mmmm --



DS 620143000
1 November 1985

2. A good status indicates that the message has been
accepted for transmission. It does not mean a
successful transmission.

3. The number of bytes to be transmitted must be at least
one and no more than 1024. The maximum number of
bytes is a communication variable that can be changed.

4. The event block that is passed to XMTLAN must be the

same as the one that is passed to RCVLAN and GETLAN.

3.2.6.3 Receive a Message from a Terminal Port

Calling Sequence:

CALL "RCVLAN" USING RCV-BLOCK,
EVENT-NUMBER.
EVENT-BLOCK-nn,
FLAGS,
STATUS.

Description:

RCVLAN informs the operating system that the program will
accept a message from the given terminal port.

Inputs:

RCV-BLOCK
EVENT-NUMBER
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Only one receive outstanding permitted
Event number zero
Event number greater than maximum
System dependent errors

Notes:

3-20

:,



DS 620143000
1 November 1985

1. Only one receive may be outstanding for a given
terminal port.

2. The event number may have a value of 01 through 22. A
value of zero or 23 through 99 causes an error status
to be returned. The maximum number of events
outstanding that can be waited on at any one time is
22 because COBOL on the Level 6 limits the number of
arguments in a calling sequence to 25.

3. The event number must be unique.

4. The value of the event number is the priority of the
receive message request in relation to the other
outstanding requests. The lower the value, the higher
the priority.

5. The RCV-BLOCK contains the port name, the buffer size,
and the buffer into which the message will be stored.
(See the next section for a detailed description of
the RCV-BLOCK.)

6. The RCV-BLOCK that is passed to RCVLAN must be the
same one that is passed to GETLAN when the program
actually gets the message from the given terminal
port.

7. The event block that is passed to RCVLAN must be the
same one that is passed to GETLAN when the program
actually gets the message from the given terminal
port. The event block is also the same one that is
passed to XMTLAN to send a message to the port.

3.2.6.4. Get a Message from a Terminal Port

Calling Sequence:

CALL *GETLAN" USING RCV-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

GETLAN aocepts the message that was received from the given
terminal port and moves it into the given buffer.

3-21

' ~unmmbm~mml A



DS 620143000
1 November 1985

Inputs:

RVC-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Receive not satisfied
Not a LAN event block
No receive outstanding
Buffer size zero
Buffer size greater than maximum
Buffer too small
System dependent errors

Notes:

1. The RCV-BLOCK contains the port name, the buffer size,
the buffer, and a location into which the number of
bytes in the message is stored by GETLAN.

2. The RVC-BLOCK that is passed to GETLAN must be the
same one that was passed to RCVLAN for the given
terminal port.

3. The event block that is passed to GETLAN must be the
same one that was passed to RCVLAN for the given
terminal port. The event block is also the same one
that is passed to XNTLAN to send a message to the
port.

4. If the buffer size is too small for the entire
message, an error status is returned and the message
is lost. There is no longer a receive outstanding.

5. If no receive is outstanding for the given terminal
port, an error status is returned.

3-22



DS 620143000
1 November 1985

3.2.6.5 Cancel a Receive Request from a Terminal Port

Calling Sequence:

CALL "CNLLAN" USING RCV-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

CNLLAN removes the receive outstanding for a given
terminal port.

Inputs:

RCV-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
No receive outstanding
Not a LAN event block
System dependent errors

Notes:
1. The RCV-BLOCK that is passed to CNLLAN must be the

same one that was passed to RCVLAN when the receive
was requested.

2. The event block that is passed to CNLLAN must be the
same one that was passed to RCVLAN when the receive
was requested.

3. The RCV-BLOCK contains the port name, the buffer size,
the buffer into which the message will be stored, and
a location for the actual number of bytes in the
message. (See the next section for a detailed
description of the RCV-BLOCK.)

4. If there was a message present, it is lost.

3-23



DS 620143000
1 November 1985

3.2.6.6 Terminate Communication Port Interface

Calling Sequence:

CALL "TRNLAY" USING PORT-NAME,
RCV-BLOC,
XMIT-BLOCK,
EVENT-BLOCK-nn,
STATUS.

Description:

TRMLAN is needed for the IBM environment only. It issues
VTAM Calls to disconnect from the port. The implementation on
the other computers is a stub.

Inputs:

PORT-NAME
RCV-BLOCK
KNIT-BLOCK
EVENT-BLOCK-nn

Outputs:

STATUS

3.2.7 Interprocess Communication Primitives

The IPC primitives are used to transfer messages between
tasks on the same computer. They have been designed to localize
all host dependent code in several small routines. These
routines are referred to as the Interprocess Communication
Primitives or IPC's.

3.2.7.1 Create a Mailbox

Calling Sequence:

CALL "CRTNBX" USING INPUT-MAILBOX-VAME,
MAILBOX-SIZE,
EVENT-BLOCK-nn,
STATUS.

Description:

CRTMBX creates a mailbox through which the program will

3-24



DS 620143000
1 November 1985

receive messages from another program running on the same

computer.

Inputs:

INPUT-MAILBOX-NAME
MAILBOX-SIZE
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid mailbox name
Mailbox already exists
Mailbox size zero
Mailbox size greater than maximum
Event block not initialized
System dependent errors

Notes:

1. If the input mailbox has been created previously, an
error status is returned.

2. The event block that is passed in the CRTMBX call is
the same event block that is passed when the program
issues RCVMSG and GETMSG for the input mailbox.

3. The mailbox size is only applicable on the VAX and IBM
Implementations of the CRTMBX primitive. The resource
wait mode on the VAX must be disabled to permit the
program to regain control immediately upon detection
of mailbox full.

3.2.7.2 Send a Message to Another Progrm

Calling sequence:

CALL "SNDMSG" USING TARGET-MAILBOX-NAME,
BUFFER,
NUMBER-OF-BYTES.
EVENT-BLOCK-nn,
STATUS.

3-25



DS 620143000
1 November 1985

Description:

SNDNSG sends a message to another program running on the
same computer through the input mailbox of the other program.
The event block is system dependent storage that is required by
SNDKSG. It is not associated with an event that can be waited
on.

Inputs:

TARGET-MAILBOX-NAME
BUFFER
NUMBER-OF-BYTES
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Mailbox not found
Mailbox full
Number of bytes zero
Number of bytes greater than maximum
System dependent errors

Notes:

1. The receiving program must have previously created its
input mailbox. If no mailbox exists with the given
name, an error status is returned. 4

2. A good status indicates that the message has been
accepted by the operating system for transfer. It does
not mean that the message has been received by the
other program.

3. If the status of "mailbox full" is returned, the
program must retry at a later time.

4. The number of bytes to be sent must be at least one
and no more than 2000.

5. The event block must not be in use for an input

3-26



DS 620143000
1 November 1985

mailbox or a timer. An event block associated with a
mailbox is in use if the mailbox has been created but
not deleted. An event block associated with a timer is
in use if the timer has been started but not cancelled
or runout during a WAITnn.

6. A series of SNDMSG calls being directed to a single
target mailbox should use the same event block. The
VAX assigns a logical channel ID to a target mailbox
at the time of the first SNDMSG call and uses that
channel ID for subsequent SNDMSG calls. This event
block cannot be used for other purposes until it is
released (see RELEVB).

3.2.7.3 Receive a Message from Another Program

Calling sequence:

CALL "RCVMSG" USING INPUT-MAILBOX-NAME,
EVENT-NUMBER,
EVENT-BLOCK-un,
STATUS.

Description:

RCVMSG informs the operating system that the program will
accept a message sent from another program to the given input
mailbox. The program continues executing. The fact that a
message has been sent by another program is obtained with the
WAITnn or GETMSG primitive.

Inputs:

INPUT-MAILBOX-NAME
EVENT-NUMBER
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox named
Not a receive event block
Only one outstanding receive permitted

3-27



DS 820143000
~1 November 1985

Event 
number 

zero

Event number greater than maximum
System dependent errors

Notes:

1. Only one receive may be outstanding for a given input
mailbox.

2. The event block that is passed to RCVMSG must be the
same event block that was passed to CRTMBX when the
given input mailbox was created.

3. The event number must be unique. (See the description
of the event number in Section 3.5.2)

4. The value of the event number is the priority of the
receive message request in relation to the other
outstanding requests. The lower the value, the higher
the priority.

5. The event number may have a value of 01 through 22. A
value of zero or 23 through 99 causes an error status
to be returned. Because COBOL on the Level 6 limits
the number of arguments in a calling sequence to 25,
the maximum number of outstanding events that can be
waited on at any one time is 22.

3.2.7.4 Get a Message from Another Program

Calling Sequence:

CALL "GETMSG" USING INPUT-MAILBOX-NAME,
BUFFER,
BUFFER-SIZE.
NUMBER-OF-BYTES,
EVENT-BLOCK-nn,
STATUS.

Description:

GETMSG accepts the message that was sent from another program
running on the same computer and moves it into the given buffer.

Inputs:

3-28

bX



DS 620143000
1 November 1985

INPUT-MAILBOX-NAME
BUFFER-SIZE
EVENT-BLOCK-nn

Outputs:

BUFFER
NUMBER-OF-BYTES
STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox name
Not a receive event block
No receive outstanding
Receive not satisfied
Buffer too small
Buffer size zero
Buffer size greater than maximum
System dependent errors

Notes:

1. If no receive is outstanding for the given input
mailbox, an error status is returned.

2. If a receive is outstanding but no message has been
delivered by the operating system, a status is
returned indicating that no message has been received.

3. If the buffer size is too small for the entire
message, an error status is returned and the message
is lost. An outstanding receive for that mailbox no
longer exists.

4. The event block that is passed to GETMSG must be the
same one that was passed to RCVMSG for the given input
mailbox.

3.2.7.5 Delete a hailbox

Calling Sequence:

CALL "DELMBX" USING INPUT-MAILBOX-NAME,
EVENT-BLOCK-nn,
STATUS.

3-29

I ( ' i m a mmm
m mm-" ~ i U i



DS 620143000
1 November 1985

Description:

DELMBX removes the ability to receive messages from another

program through the given input mailbox.

Inputs:

INPUT-KAILBOX-NAME
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Invalid event block for mailbox named
Not a receive event block
System dependent errors

Notes:

1. The event block that is passed to DELNBX must be the
same event block that was passed to CRTMBX when the
given input mailbox was created.

2. If there are messages remaining in the mailbox, they
are lost.

3. The given event block is re-initialized.

3.2.7.6 Release an Event Block

Calling Sequence:

Call "RELEVB" USING TARGET-MAILBOX-NAME,
EVENT-BLOCK-nn,
STATUS.

Description:

RELEVB releases an event block which had been used for
sending messages to a target mailbox. The event block is cleared
and may be used for another purpose.

3-30



DS 620143000

1 November 1985

Inputs:
TARGET-MAILBOX-NAKE
EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Invalid event for mailbox named
System dependent errors (VAX only)

Notes:

1. The VAX implementation of RELEVB deassigns the logical
channel previously assigned to the target mailbox by
SNDMSG.

2. All logical channels assigned to target mailboxes by
SNDNSG primitive calls on the VAX are deassigned when
a process terminates. Therefore, for many
applications, a call to RELEVE is not required.

3.2.7.7 Start a Timer

Calling Sequence:

CALL "SETTIN" USING TINE-INTERVAL,
EVENT-NUMBER,
EVENT-BLOCK-nn,
STATUS.

Description:

SETTIM requests the operating system start a timer with the
given time interval. The program continues executing. The fact
that the timer has elapsed is obtained from the WAITnn
primitive. Only one timer may be active at a time.

Inputs:

TIME-INTERVAL
EVENT-NUMBER
EVENT-BLOCK-nn

Outputs:

3-31



DS 620143000
1 November 1985

STATUS

Possible Status Conditions:

Successful
Time interval zero
Time interval greater than maximum
Event number zero
Event number greater than maximum
Event block not initialized
System dependent errors
Timer already active

Notes:

1. The time interval is given as HHMMSS.

2. The minimun time interval is 000001. The maximum time
interval is 24 hours, 59 minutes, 59 seconds.

3. The event number must be unique. (See the description
of the event number in Section 3.5.2)

4. The value of the event number may be 01 through 22. A
value of zero or 23 through 99 causes an error status
to be returned. The maximum number of outstanding
events that may be waited on at any one time is 22
because COBOL on the Level 6 limits the number of
arguments in a calling sequence to 25.

5. The value of the event number in relation to the
values of other event numbers is an indication of
priority for the WAITnn primitive. The event number
with the lowest value has the highest priority.

6. The event block that is passed to SETTIM must be the
same event block that is passed to CNLTIM to cancel
the timer.

3.2.7.8 Stop a Timer

Calling Sequence:

CALL OCNLTIM" USING EVENT-BLOCK-nn,
STATUS.

3-32

OL lb-.. . . ul d • I mm ml n



DS 620143000
1 November 1985

Description:

CNLTIW cancels the request made to the operating system by
SETTIM to be notified when a given time interval has passed.

Inputs:

EVENT-BLOCK-nn

Outputs:

STATUS

Possible Status Conditions:

Successful
Not a timer event block
System dependent errors

Notes:

1. The event block that is passed to CKLTIN must be the
same event block that was passed to SETTIM to start
the timer.

2. The given event block is re-initialized.

3.2.7.9 Wait for an Event to Occur

Calling Sequence:

CALL "WAITnn" USING EVENT-NUMBER,
STATUS,
NUMBER-OF-EVENT-BLOCKS,
EVENT-BLOCK-O1,
EVENT-BLOCK-02,

EVENT-BLOCK-xx.

where nn is a number from 01 through 22 that indicates the
number of event blocks being passed

Description:

3-33



DS 62Q43000
1 November 1985

WAITnn waits for one of the outstanding requests that are
associated with the list of event blocks to be satisfied. The
event number associated with the completed request is returned
in the EVENT-NUMBER variable.

Inputs:

NUMBER-OF-EVENT-BLOCKS
EVENT-BWOCK-O1
EVENT-BLOCIC-02

EVENT-BLOCK-xx

Outputs:

EVENT-NUMBER
STATUS

Possible Status Conditions:

Successful
Number of event blocks zero
Number of event blocks greater than
maximum
List of event blocks greater than
number of event blocks
Event numbers not unique
No requests outstanding
System dependent errors

Notes:

1. The order in which the testing for the completion of a
request is performed is based upon the event number
associated with each event block. The request with
the lowest event number has the highest priority;
therefore, the check for its completion is done first.
The request with the next lowest event number is
checked second, and so forth. This process continues
until a request associated with one of the given event
blocks has been satisfied.

2. If two requests have been completed, the one with the
lowest event number is indicated to the calling
program. The information that another request has been

3-3



DS 620143000
1 November 1985

satisfied is retained by the primitive until the
WAITnn is called again.

3. The maximum number of event blocks that may be passed
is 22. Because COBOL on the Level 6 limits the number
of arguments in a calling sequence to 25, the maximum
number of outstanding events that can be waited on at
any one time is 22.

4. At least one event block must be passed.

5. Each event block must have a unique event number
associated with it; otherwise, an error status is
returned.

6. It is not required to have an outstanding request
associated with each event block passed to WAITnn.
Because the primitive is able to differentiate between
event blocks that have outstanding requests and those
that do not, the WAITnn primitive may be passed all
the event blocks that would be needed for the worst
case. If there are no requests outstanding, however,
an error status is returned.

7. If an error status is returned, the event number is
set to character zeros.

8. The 'list of event blocks greater than number of event
blocks' error is checked only by the IBM.

3.2.7.10 Terminate a Program

Calling sequence:

CALL "ENDRUN".

Description:

ENDRUN calls the appropriate system routine to stop
execution of the particular program without halting the IISS
system.

Inputs:

None

Outputs:

3-35



DS 620143000
1 November 1985

None
3.2.7.11 Save an Event Indicator

Calling Sequence:

CALL "LOCKEF".

Description:

LOCKEF is applicable only to the VAX. Its purpose is to
obtain event indicator 63 from the system so that none of the
other primitives can use it. LOCKEF is needed to work around a
bug in VAX-li DBNS. It is called by the Request Processors that
manipulate data store under the VAX-11 DBMS.

Inputs:

None

Outputs:

None

3.2.7.12 Request an Error Be Lofged

ERRPRO -- Process Error

Description:

This module is used to process errors. It gets the current
date and time, formats the message and writes the message to the
mailbox ERRMBX. In case of an error, this module will print a
message on the operator hardcopy concole. It will not terminate
the processing of the calling program, but will return control
to the calling program regardless of whether the error message
is being written to the mailbox or not. Another task, ERRLOG,
will read the error message from the mailbox and log the message
on a file. See module specification of ERRLOG for details of
this error logging task. The format of an error message is as
shown:

Byte Data

1 - 2 function code (DA)
3 - 10 current date (YY/KM/DD)

3-36



DS 620143000
1 November 1985

11 - 18 current time (HH:MM:SS)
19 - 24 module name
25 - 29 return status
30 - 89 message description

INTERFACES:

ENTRY CONDITIONS:

RET-STATUS PIC X(5).
NODULE-NAME PIC X(6).
MESG-DESC PIC X(60).

EXIT CONDITIONS:

(NONE)

GLOBAL BLOCKS:

(NONE)

DATA ORGANIZATION:
LOCAL VARIABLES:

ERR-STATUS PIC X(5). --ERROR STATUS

DATABASE INTERACTION:

LIMITATIONS:

Depending on the operating system, we may have a problem
trying to write a message to the operator console. If so, some
other mechanism will be used to log the error status on a
hardcopy device in case this module encounters an error while
writing to the ERRMBX mailbox.

3.2.7.13 Lol an Error

ERRLOG -- PERFORM ERROR LOGGING TO A FILE

Description:

This program reads a message from mailbox ERRMBX. The
format of the message is as follows:

Byte Data

3-37



DS 620143000
1 November 1985

1 - 2 Function code
e.g., DA -- error message data to be

logged to file ERRLOG.DAT
CF -- close current version of
file and open a new version of
the file ST -- close current
version of file and terminate
processing

3 - 109 Data portion of message -- If the
function code is DA, the data portion of
the message is formatted as follows:

Byte Data

3 - 10 current date (YY/HM/DD)
12 - 19 current time (YY/NH/DD)
21 - 35 process name
37 - 42 module name
44 - 48 return status
50 - 109 message description
11, 20, 36,
43, 49 (blank)

Depending on the function code, this routine will branch to
the corresponding part of the program. If an error is detected
in this module, it will try to display the error on the
operator's hard copy device. This module is executed as soon as
IISS is brought up. It will check to see if mailbox ERRMBX is
already created or not. If not, it will create the mailbox.
Otherwise it will set up the event block for a future receive.
Mailbox ERRMBX is a temporary mailbox and there is no need to
delete or clean up the mailbox when this program is brought up.
If there is no message in the mailbox, this program will suspend
processing and wait for a message to arrive at mailbox ERRWBX.
If the message contains function code ST, this routine will
close the current version of the file and terminate processing.
If the message contains function code CF, this routine will
close the current version of the file and open a new version of
the file. Then it continues to read messages from the mailbox.
If the message contains function code DA, it will write a record
to the ERRLOG.DAT file and continue to read messages from the
mailbox.

DATA ORGANIZATION:

LOCAL VARIABLES:

3-38

AL a.- -A



DS 620143000
1 November 1985

DATABASE INTERACTION:

ERRLOG.DAT -- this is an indexed file of record size (102) with
the following format:

Byte Data

1 - 8 current date (YY/MM/DD)
9 - 16 current time (YY/MM/DD)
17 - 31 process name
32 - 37 module name
38 - 42 return status
43 - 102 message description

LIMITATIONS:

LEVEL 6 MOD 400 operating system does not keep track of the
version number of the file. In order to keep different versions
of the file, we may have to rename the current version of the
file and then create a new version using ERRPRO.DAT as the file
name.

3.3 Special Requirements

3.3.1 Programming Methods

COMM programming methods shall conform to the standards set
forth by General Electric in the IISS Software Development
Guidelines/Conventions document. Principles of structured
design and programming will be adhered to.

3.3.2 Expandability

The design constraints on the communictions subsystem were
to follow the ISO reference model, use a local area network,
and, if possible, use standard, vendor-supported softwre
drivers. The objective is to avoid writing new drivers with all
of the maintenance problems that this entails, and to avoid
developing any special hardware. Various communications
packages and approaches were reviewed and evaluated with respect
to their applicability to the local area network usage, the
availability for the computers to be used on the Test Bed, and
their adherence and extension to the ISO reference model. The
final conclusion was that no communication protocol existed or
was in the detailed specification stage, even for the lower

3-39

&.- . ,... mm m m m i



DS 620143000

1 November 1985

levels, to fully satisfy the needs and constraints of the Test
Bed and at the same time not to unduly overburden the system
with capabilities that are not needed for a LAN-based system.

Based on the evaluation of currently available packages,
and in consultation with Computer Technology Associates (active
on the ISO committee), it was decided to develop a protocol
based on the standard "bisynch" protocol for level 2 that would
serve in the interim period and be compatible with the
substitution of new standard protocols when they become
available. Also, local area network vendors will begin
supplying compatible host protocols. In the meantime, the
protocols developed for the project will use standard terminal
drivers supplied by the computer vendors and will interface to
the local area network as a standard terminal, making the
interface completely standard for the LAN.

Since the system dependent software for each host computer
on the IISS is implemented in the primitives, additional types
of computers can be added to the IISS and only the primitives
have to be reimplemented.

3.4 Human Performance

Not Applicable

3.5 Data Description of Arguments Used with the Primitives

3.5.1 Data Description of Arguments for Communication Subsystem
Primitives

- Xmit-block

The argument XMIT-BLOCK is a variable name associated with
a block of contiguous storage. It contains the port name, the
number of bytes to be transmitted, and the buffer for the
message. The message consists of the header, the data, and the
longitudinal redundancy check (LRC). The location of the LRC is
the three bytes Immediately following the data. XMIT-BLOCK
also contains the buffer size so that both blocks can be
manipulated by the same subroutines. Its description in COBOL
is

01 XMIT-BLOCK.
03 XMIT-PORT-NAME PIC X(4).
03 XMIT-NO-OF-CHARS PIC 9(4).
03 XMIT-BUFFER-SIZE PIC 9(4).

3-40



DS 620143000
1 November 1985

03 XMIT-BUFFER.
05 XMIT-HEADERI PIC 9.
05 XMIT-HEADER2 PIC 9.
05 XMIT-HEADER3 PIC X.
05 XMIT-DATA PIC X(1021).
03 XMIT-SEQUENCE-NO PIC 9

- Rcv-block

The argument RCV-BLOCK is a variable name associated with a
contiguous block of storage. It contains the port name, the
number of bytes in the message just received, the maximum number
of bytes the buffer can hold, and the buffer for the message.
Its description in COBOL is

01 RCV-BLOCK.
03 RCV-PORT-NAME PIC X(4).
03 RCV-NO-OF-CHARS PIC 9(4).
03 RCV-BUFFER-SIZE PIC 9(4).

03 RCV-BUFFER.
05 RCV-HEADER1 PIC 9.
05 RCV-HEADER2 PIC 9.
05 RCV-HEADER3 PIC X.
05 RCV-DATA PIC X(1021).

03 RCV-SEQUENCE-NO PIC 9.

- Flags

The argument FLAGS is a variable name associated with a
contiguous block of storage. It contains data that indicates
whether this version of COMM is primary, what the state of COMM
is, time settings, and the host and target computer indicators.

- Port-name

The argument PORT-NAME contains the alphanumeric characters
required by the operating system to indicate the exact terminal
port the COMM program will use.

01 PORT-NAME PIC X(12)

3.5.2 Data Description of Arguments for IPC Primitives

- Input-mailbox-name

3-41



DS 620143000
1 November 1985

The argument INPUT-MAILBOX-NAME contains a 14-character
alphanumeric (no embedded blanks) that is used by the program to
indicate it will accept and process messages from other programs
running on the computer if they are sent to a mailbox with this
14-character label. It is recommended that a different mailbox
name be used to receive messages from different programs. Its
description in COBOL is

01 input-ailbox-name-x PIC X(14).

- Target-mailbox-name

The argument TARGET-MAILBOX-NAME contains the 14-character
alphanumeric that is the input mailbox name for the program to
which the message is to be sent. Its description in COBOL is

01 target-mailbox-name-x PIC X(14).

- Mailbox-size

The argument MAILBOX-SIZE contains the the amount of
storage in bytes the programmer wants allocated by the operating
system for the given mailbox. Its description in COBOL is

01 mailbox-size-x PIC 9(5).

- Buffer

The argument BUFFER is a variable name that is associated
with a given amount of contiguous memory. The amount of memory
should be enough to contain the largest single message that will
be sent or received. Its description in COBOL is

A 01 buffer-x PIC X(2000).

- Number-of-bytes

The argument NUMBER-OF-BYTES contains the actual number of
characters that, in the case of SNDSG, are to be sent. In the
case of GETMSG it is the number of bytes that were moved into
the buffer. Its description in COBOL is

01 number-of-bytes-x PIC 9(4).

- Buffer-size

The argument BUFFER-SIZE contains the maximum number of

3-42



DS 620143000
1 November 1985

bytes that can be stored in the buffer by GETNSG. Its

description in COBOL is

01 buffer-size-x PIC 9(4).

- Number-of-event-blocks

The argument NUMBER-OF-EVENT-BLOCKS contains the number of
event blocks that are being passed to the WAITnn block. Its
description in COBOL is

01 number-of-event-blocks-x PIC 99.

- Time-interval

The argument TIME-INTERVAL contains the number of hours,
minutes and seconds the timer Is to count before it returns a
request complete. Its description in COBOL is

01 time-interval-x.
03 time-in-hours PIC 99.
03 time-in-minutes PIC 99.
03 time-in-seconds PIC 99.

The maximum time interval is 24 hours, 59 minutes, 59

seconds.

- Status

The argument STATUS contains a code that indicates whether
the primitive was successful or not; and, if it was not, what
the problem was. Its description in COBOL is

01 status-x PIC X(5)

- Event-block

The argument EVENT-BLOCK is a variable name that is
associated with a block of contiguous memory to be used by the
primitive. It is, therefore, system dependent stcrage that may
not be used by the program. Since it is system dependent, its
size will vary from host to host. There are a set of include
files that a programmer may use to define the event blocks. The
names of the files are

EVBKO1.system standard suffix
EVBK02.

3-43

N



DS 620143000
1 November 1985

EVBK22. "

The programmer must decide the maximum number of event
blocks that will be needed by the program at any one time. In
the initialization section of the program, all the event blocks
must be initialized to character zeros. The event block will be
re-initialized by the primitives when the timer runs out or is
cancelled and when a mailbox is deleted.

The event block differs from the other arguments passed to
the primitives. For all the others, the primitives need the
contents or value of the arguments. In the case of the event
block, however, the primitives need its address. Therefore, a
dummy argument for an event block will not work. The following
code illustrates the incorrect passing of event blocks.

MOVE EVENT-BLOCK-O1 TO EVENT-BLOCK.
PERFORM CREATE-MAILBOX.

MOVE EVENT-BLOCK-02 TO EVENT-BLOCK.
PERFORM CREATE-MAILBOX.

CREATE-MAILBOX.
CALL "CRTMBX" USING INPUT-MAILBOX-NAME,

MAILBOX-SIZE,
EVENT-BLOCK,
STATUS.

Programmers should use the CASE statement to invoke the

primitives requiring an event block as an argument.

- Event-number

The argument EVENT-NUMBER is a code that is returned by the
WAITnn primitive to indicate which of the outstanding requests
was satisfied. The code is set by the programmer through the
value in the EVENT-NUMBER passed to the RCVMSG and SETTIM
primitives. The value must be in the range 01 through 22.

3-44

II



DS 620143000
1 November 1985

For example, a program could create MAILBOX-A. MAILBOX-B
and MAILBOX-C and issue a receive on each of the mailboxes with
EVENT-NUMBER set to 01, 02 and 03 respectively. If a message was
sent by another program to MAILBOX-B, the WAITnn primitive would
return 02. Thus, the programmer can use the EVENT-NUMBER as a
condition data item to determine what program sent the message.

Its description in COBOL is

01 event-number PIC 99.

The event number is also used by the WAITnn primitive to
determine the order in which the outstanding requests are to be
tested. The request with the lowest event number is checked
first. The request with the next lowest event number is checked
second, and so forth.

3.5.3 Data Description for the Event Block

The contents of the event block are system dependent except
.for the first two fields. The first field is the event type
with a COBOL description of PIC 99. The second field is the
event outstanding flag with a COBOL description of PIC 9. Both
fields are described in more detail below.

- Event-type

The possible values for event-types are

01 IPC Receive
02 Timer Runout
03 LAN Receive (Terminal input complete)

- Event-outstanding

The possible values of event-outstanding codes are

Zeros No request outstanding
Character One Request outstanding, wait not complete
Character Two Request outstanding, wait complete. This

state indicates that the request for a
receive on either the LAN or a mailbox
has been satisfied but that the user has
not performed a get. The user is not
required to perform a get after a wait or

receive.

3-45

I~ .-...=.--__ II



DS 620143000
I November 1985

3.6 Aaptation Requirements

The COMM must be compiled, linked, and installed on each
host (VAX/VMS. HL 6/OCOS KOD400, IBM/VS) in the 1ISS test bad.
These are located at the General Electric facility in Albany.
New York. If a new host type is added to the configuration, the
host specific primitives must be reimplemented for the new host
and relinked with the recompiled nonhost-specific software.

3-46

& 5- -



DS 620143000
1 November 1985

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definition

"Testing" is a systematic process that may be preplanned

and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error.

"Antibugging" Is defined as the philosophy of writing
programs In such a way as to make bugs less likely to occur and
when they do occur, to make them more noticeable to the
programmer and the users. That is, do as much error checking as
is practical and possible In each routine. This approach will
be followed in the COMM.

The quality assurance provisions for test will consist of
the normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team. Structured design,
design walk-throughs and the incorporation of 'antibugging"
facilitate this testing by exposing and addressing problem areas
before they become coded "bugs.* A detailed description of the
unit tests for COMM is given in the Unit Test Plan for the
Communication Subsystem, UTP620143000.

The integration testing will entail use of a test NET
implementation on each host. This test program will send
messages to COMM. read messages from COMM, and print out
results. COMM can also read messages from a terminal and output
messages to a terminal in the absence of a LAN. A simple cable
can also be used to connect the VAX and L6 instead of the LAN.

4-1

A ~- -,



DS 620143000

1 November 1985

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will

be the ICAM Integrated Supost System (IISS) Test Bed site

located at General Electric in Albalny. NY. The software

associated with each 0KMM CPCI release will be delivered on a

media which is compatible with the IISS Test Bed. The release

will be clearly identified and will include instructions on

procedures to be followed for installation of the release.

5-1

- U.S.Governm flnt Printing Office: 1987 748 061 (,(1934

Ik


